

NMP DS1 FACT SHEET

NSTAR

IPS Diagnostic Sensors (IDS)

Goal Understand the in-situ (local) environment of a spacecraft using an ion propulsion system (IPS).

Approach

- Perform ground and spaceflight measurements of the following critical IPS environmental factors:
 - Plasma, contamination
 - AC/ DC electric, magnetic fields
- Develop & validate predictive models for future ion propulsion missions

Instrument Description

12 environmental sensors in two interconnected units: (Mass: 8 kg, Power: 21W) Remote Sensors Unit (RSU):

DC Magnetic Fields: 2 ea. 3-axis Flux-Gate Magnetometers (FGMs)

Plasma: 2 Langmuir Probes(LPs), Retarding Potential Analyzer (RPA) Contamination: 2 Quartz Crystal Microbalances (QCMs), 2 Calorimeters (CALs) Diagnostic Sensors Electronics Unit/Fields Measurement Processor (DSEU/FMP): Electrostatic Fields: 2-m dipole Plasma Wave Antenna (PWA) with pre-amplifier Electromagnetic Waves: 2 Search Coil Magnetometers (SCMs); 1 failed

Jet Propulsion Laboratory:	Systems Engineering, FMP, PWA, SCM	
	Structure, I&T, Mission Operations	
Physical Sciences, Inc.:	DSEU Electronics, Calorimeters	
Maxwell Technologies:	Plume modeling	
CM Research: Quartz Crystal Microbalances		
Technical University of Braunschweig:	Flux-Gate Magnetometers	
TRW:	Plasma Wave Spectrometer, Pre-amp	

Sensor	Measurement	Range	Resolution
QCMs	Mass/area	0 to 500 μg/cm ²	0.005 μg/cm ²
CALS	Solar Absorptance (α)	α = 0.08 (BOL) to 0.99	$\Delta \alpha = 0.01$
	Hemi. Emittance (ε)	$\varepsilon = 0.05 \text{ to } 0.85 \text{ (BOL)}$	$\Delta \varepsilon = 0.01$
LPs F	Probe Current	I =-0.4 to 40 mA	1%
	Probe Voltage	V = -11 to +11 VDC	1%
	Current (Gain Select)	I = 0.01, 1, 10, 100μA	1%
	Grid Bias Voltage	V = 0 to +100 VDC	0.4V
PWA	E-field (Adjust. Gain)	50 to 160 dBμV/m	±3 dBμV/m
	24 Freq. Channels *	10 Hz to 30 MHz (4/decade)	± 40% (-3dB)
SCM	SCM B-field (Adjust. Gain)	80 to 160 dBpT	± 3 dBpT
	16 Freq. Channels *	10 Hz to 100 kHz (4/decade)	± 40% (-3dB)
FGMs	Magnetic Field Vector **	±25,000 nT	0.5 nT

²⁰ kHz waveform capture (1 sec)

Programmatic:

Funded by the NSTAR Project with deeply appreciated support from JPL/TAP, DARA, TRW and NMP

Point-of-contact:

David.E.Brinza@jpl.nasa.gov Jet Propulsion Laboratory 125-177 4800 Oak Grove Drive Pasadena, CA 91109 (818)354-6836

Key Findings:

- IPS plasma drives DS1 chassis -6 to -10V with respect to solar wind "ground"
 - Chamber tests can permit electrical "short" between chassis and IPS plume potentials
- Line-of-sight contamination from IPS molybdenum grids comparable to ground measurement
- Plasma waves <120 dB_µV/m, IPS transients comparable to DS1 hydrazine thruster events
- IPS permanent magnetic field vs temperature determined, field stability not yet verified (Jan.'00)

^{** 20} Hz B-vector waveform capture (up to 55 sec)